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Abstract

We develop parametric inference procedures for large panels of noisy option data in a setting, where
the underlying process is of pure-jump type, i.e., evolves only through a sequence of jumps. The
panel consists of options written on the underlying asset with a (different) set of strikes and ma-
turities available across the observation times. We consider an asymptotic setting in which the
cross-sectional dimension of the panel increases to infinity, while the time span remains fixed. The
information set is augmented with high-frequency data on the underlying asset. Given a parametric
specification for the risk-neutral asset return dynamics, the option prices are nonlinear functions
of a time-invariant parameter vector and a time-varying latent state vector (or factors). Further-
more, no-arbitrage restrictions impose a direct link between some of the quantities that may be
identified from the return and option data. These include the so-called jump activity index as well
as the time-varying jump intensity. We propose penalized least squares estimation in which we
minimize the L2 distance between observed and model-implied options. In addition, we penalize
for the deviation of the model-implied quantities from their model-free counterparts, obtained from
the high-frequency returns. We derive the joint asymptotic distribution of the parameters, factor
realizations and high-frequency measures, which is mixed Gaussian. The different components of
the parameter and state vector exhibit different rates of convergence, depending on the relative
(asymptotic) informativeness of the high-frequency return data and the option panel.
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1 Introduction

Option data comprise a rich source of information about the volatility and jump risks of the underlying

asset as well as their pricing. Over the last decade, both the amount of trading in existing option

contracts and the number of newly marketed contracts have grown significantly. Nowadays, across

several asset classes, there are active markets where a very large number of options written on the

same underlying asset trade continuously throughout the trading hours. These options differ in terms

of their tenor (maturity) and strike price. As a result, each derivative security offers unique information

regarding the conditional risk-neutral distribution of the underlying asset. Moreover, for many assets,

high-frequency price and quote data is readily available during trading hours and may aid in the

estimation of the realized volatility of, and jump risks embedded in, the asset returns.

Taken together, the full trading record for each such asset can be overwhelming. The volume

of tick data, reflecting every transaction and order book entry associated solely with the underlying

asset, can be extremely large, amounting to hundreds of entries per second. Even so, the option

data is typically far more challenging, as all quotes and transactions for hundreds of distinct options,

differentiated by tenor and strike price, are recorded. Since option values invariably shift in response

to movement in the underlying asset price, a large set of quotes is updated almost continuously. In

addition, there is substantial heterogeneity in the option cross-section over time, as some contracts

expire, others start trading after being introduced to the market, and a few simply fail to be quoted for

some period, only to reenter later with nontrivial quote activity. Furthermore, the increasing liquidity

and the availability of more, especially shorter, tenors in many option markets also generate significant

low-frequency trends in the size of the cross-section, so the option panel is typically highly unbalanced.

Ideally, we should be looking for ways to exploit the high-frequency observations on both the

option cross-section and the high-frequency return data to infer the evolving shape of the conditional

term structure for the risk-neutral return distribution and monitor the evolution of the state variables

driving the return dynamics. Given the current state of the option pricing literature, this goal remains

elusive. However, significant progress is being made along the lines of formally developing inference

tools that combine the high-frequency return information with lower frequency option data. The key

is to rely on theory to identify the relevant statistics from the high-frequency return data that speak

to the general distributional features of the risk-neutral distribution and to the concurrent value of

variables that pertain to the state vector governing the future evolution of the return distribution.

Andersen et al. (2015) propose inference procedures for the parameters and factor realizations

implied by a parametric model for the risk-neutral dynamics of the underlying asset based on an

option panel with a fixed time span and a fixed set of option observation times, but an asymptotically

expanding cross-sectional dimension. In this setting, the option-based information set is augmented
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by nonparametric estimates of the spot diffusive volatility constructed from high-frequency return

data. Assuming that the high-frequency data is less informative than the option data (when combined

with the parametric model) for recovery of the latent factor realizations, the system is estimated

by penalized least squares, minimizing the L2 distance between model-implied and observed option

prices and further penalizing deviation between model-implied and nonparametric estimates of the

spot diffusive volatility based on the high-frequency returns. This represents the first procedure to

formally develop joint asymptotic distributional results for the parameters, state vector realizations,

and the current value of the spot volatility, exploiting joint option and high-frequency return data.

In light of these observations, the aim of this paper is twofold. First, we seek to relax the (fairly

strict) assumption in Andersen et al. (2015) regarding the relative informativeness of the option and

high-frequency return data about the parameters and factor realizations of the risk-neutral parametric

model. Instead, we seek an approach that adapts to the quality of the two information sources and

avoids the need for such a priori restrictions. Second, we wish to extend the framework by also including

information from the high-frequency data about the jump component of the underlying asset returns.

We achieve these goals in a setting where the price process is of pure-jump type, i.e., in a model where

the dynamics of the asset does not contain a diffusive component. Models of the pure-jump structure

have been used in prior work to describe the dynamics of asset prices, see, e.g., Madan and Seneta

(1990), Madan and Milne (1991), Barndorff-Nielsen and Shephard (2001), Carr et al. (2002, 2003),

Todorov and Tauchen (2011b) and Andersen, Bondarenko, Todorov, and Tauchen (2015). This setting

readily emphasizes the jump features of the price process and complements the analysis in Andersen

et al. (2015) by extending the inference technique to a setting void of diffusive components in the

return dynamics.

Even in the absence of any parametric model for the actual return dynamics, high-frequency return

data may be utilized as an additional source of information about the parametric model for its risk-

neutral dynamics due to equivalence features of the statistical and risk-neutral probability measures

implied by the no-arbitrage condition (a minimal assumption used in most theoretical and empirical

asset pricing work). In a diffusive setting, the absence of arbitrage implies that the diffusion coefficient

of the price process (spot volatility) is equivalent under the two probability measures, and this is utilized

in Andersen et al. (2015). For the jumps in the model, no-arbitrage conditions are more complicated.

For the “big” jumps, we have essentially no restrictions. This is intuitive, since no “big” jumps may

materialize on a given path, even if they may occur with nontrivial probability. The equivalence of

the statistical and risk-neutral probability measures does, however, impose a “similar” behavior of the

“small” jumps under the two probabilities. In particular, the so-called jump activity index and the

intensity of the “small” jumps should remain unchanged under an equivalent measure change. The
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jump activity index classifies jump processes according to the “vibrance” of their trajectories. For

example, a jump activity index of less than one implies jumps of finite variation, while an activity

index above one implies jumps of infinite variation. As such, the index has immediate implications for

risk-measure estimation and interpretation as well as model specification. Consequently, the inference

for jump activity using high-frequency data has received increasing attention in recent work, see, e.g.,

Woerner (2003, 2007), Ait-Sahalia and Jacod (2009), Todorov and Tauchen (2011a), Jing et al. (2011),

Jing et al. (2012), Todorov (2015) and Hounyo and Varneskov (2017).

Given the discussion above, we “summarize” the information in high-frequency return data about

the risk-neutral parametric model for the underlying asset by estimates of the jump activity and the

spot jump intensities at each option observation time. Specifically, we adopt the empirical character-

istic function (ECF) approach of Todorov (2015) to estimate the jump activity, and we extend the

analysis of the latter by providing a methodology to recover the spot jump intensities.1 We derive a

central limit theorem (CLT) for our nonparametric high-frequency estimators, and we further show

that it holds jointly with a corresponding limit theorem for the weighted sum of the option observation

errors. This joint limit theory, in turn, allows us to characterize the limit distribution of an estimator

that incorporates both high-frequency return data as well as option data. It is important to note that

the analysis in this paper may be readily adapted to alternative high-frequency jump activity and

jump intensity estimators (e.g., ones that are robust to the presence of a diffusion in the dynamics of

the price process), provided one can derive their asymptotic distribution.

The estimation of the risk-neutral model parameters and factor realizations is carried out via

penalized least squares. In particular, we minimize the L2 distance between observed and model-

implied option prices and further penalize for deviations of the model-implied jump activity index and

jump intensities from nonparametric estimates of them based on the high-frequency return data. The

different parts of the parameter and state vectors may exhibit different rates of convergence depending

on the relative information content (for our estimation purposes) of the return and option data.

Importantly, the user does not need to take an a priori stand on this. That is, if the returns are more

informative about, e.g., jump activity (in the sense of allowing for a faster rate of convergence), then

our penalized least squares for this particular quantity will asymptotically behave as the nonparametric

high-frequency estimator. The reverse holds true if the option data is more informative about the jump

activity parameter - in which case our estimator, asymptotically, relies exclusively on the option data.

In the boundary case where option and return data allow for estimators of jump activity with the

same rate of convergence, we can assign the two information sources in the objective function optimal

weights based on their relative precision. This feature is achieved by proposing a weighted penalized

1Todorov (2015) considers only jump activity estimation.
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least squares extension of the described methodology, which has the added advantage of being free of

tuning parameters.

The rest of the paper is organized as follows. Section 2 introduces our formal model setup for

the underlying asset and the associated option prices written on it. In Section 3, we discuss the

observation scheme and the asymptotic setup for the inference. Section 4 presents our penalized least

squares estimator and develops its associated asymptotic theory. In Section 5 we extend the results to

a weighted penalized least squares which provides efficiency gains. Finally, Section 6 concludes. The

formal statement of the assumptions and the proofs of the theorems are collected in Section 7.

2 Framework for Parametric Pure-Jump Modeling of Option Panels

This section introduces a nonlinear parametric factor model for a panel of options written on an

underlying asset, whose price is denoted by X. Specifically, the option prices are determined via

a general parametric model of pure-jump type for the risk-neutral dynamics of X. In addition, we

identify the characteristics of the underlying price process that are preserved under a change from the

physical probability measure, P, to the risk-neutral measure, Q. These specific features of the return

dynamics are invariant to any equivalent martingale measure transformation and provide fundamental

restrictions on the joint dynamics of the statistical and risk-neutral distributions within all settings

that retain the basic no-arbitrage assumption. These characteristics are important for the design of

our inference procedures developed for parametric option pricing models in the subsequent sections,

as we improve practical identification and enhance estimation efficiency by exploiting nonparametric

estimates of the relevant quantities from high-frequency return data.

2.1 Pure-Jump Dynamics of Locally Stable Type

The dynamics for the price processX is defined on a filtered probability space
(
Ω(0),F (0), (F (0)

t )t≥0,P(0)
)
.

Rather than imposing a parametric structure for X under P(0), we merely assume that its P(0)–

dynamics belongs to a general class of pure-jump model given by,

dXt

Xt−
= αt dt +

∫
x>−1

x µ̃P(dt, dx) , (1)

where the drift αt is a process with càdlàg paths, and µ̃P(dt, dx) = µ(dt, dx) − νP(dt, dx) is the

martingale jump measure associated with the counting jump measure µ(dt, dx) and its compensator

νP(dt, dx). Specifically, νP(dt, dx) is assumed to have the following structure,

νP(dt, dx) =
(
A+
t− ν

P
+(x) 1{x>0} + A−t− ν

P
−(x) 1{x<0}

)
dt⊗ dx , (2)
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where the stochastic jump intensities for positive and negative jumps, A+
t and A−t , respectively, are

processes with càdlàg paths, and the corresponding Lévy densities, νP+ and νP−, can be approximated

around zero by the Lévy density of a stable process, that is,∣∣∣∣ νP±(x)− 1(x ≷ 0)
Aβ
|x|β+1

∣∣∣∣ ≤ C

|x|β′+1
, Aβ =

(
4Γ(2− β)| cos(βπ/2)|

β(β − 1)

)−1

, |x| ≤ x0, β′ < β, (3)

for some constants C > 0 and x0 > 0. The coefficient β signifies the so-called jump activity, controlling

the roughness of trajectories of X. That is, for every t,

β ≡ inf{p ≥ 0 :
∑
s≤t
|∆Xs|p <∞}, almost surely. (4)

We restrict attention to the case 1 < β < 2, implying paths of infinite variation, which is found in

earlier work to describe returns for a variety of assets well.2 The infinite variation mimics the identical

property for diffusive representations of the return dynamics. In fact, as β approaches 2, the smaller

jumps become more frequent, generating a smoother sample path and providing an increasingly better

approximation to a (scaled) Brownian motion. By letting β < 2, we facilitate direct analysis of the

pure jump alternative to diffusive specifications of the return dynamics. Moreover, the time-varying

coefficients A+
t and A−t allow us to scale the increments of the jump innovations to generate volatility

clustering, just like the scaling of Brownian increments in diffusive stochastic volatility models.

The specification (2)-(3) is very flexible and accommodates many parametric jump models used in

empirical work. In particular, the “stable-like” restriction in equation (3) only applies for the behavior

of the jump compensator around zero, leaving the dynamic behavior of big jumps virtually unrestricted.

The specific formulation of condition (3) is required for a CLT for the estimators of β and A+
t + A−t

based on high-frequency return data, that we develop subsequently.

This assumption is obviously satisfied by the stable process, which has been used extensively for

modeling a variety of economic phenomena, including asset return distributions, see, e.g., Mandelbrot

(1961), Mandelbrot (1963), Fama (1963) and Fama and Roll (1968) for some early applications. It is

also satisfied by, e.g., the CGMY model of Carr et al. (2002) as well as models in the class of tempered

stable processes of Rosinski (2007), whose jumps may have much thinner tails than those of a stable

process. In addition, our setup allows for asymmetry in the jump compensator by having different

A+
t and A−t which, as mentioned, are free to vary generally over time. Hence, we nest Lévy-driven

SDE’s such as the COGARCH model of Klüppelberg et al. (2004), as well as the pure-jump CGMY

model with stochastic volatility in Carr et al. (2003), and, more generally, any model of pure-jump

type within the affine jump-diffusion class of Duffie et al. (2000).

2We defer all formal assumptions to Section 7.1.
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2.2 Parametric Pure-Jump Models for the Option Prices

We now specify the dynamics of X under the so-called risk-neutral measure which, in turn, enables us

to determine the theoretical value of the options written on X. Assuming that arbitrage is absent, a

risk-neutral probability measure, Q, is guaranteed to exist, see, e.g., Section 6.K in Duffie (2001), and

is locally equivalent to P(0) (under some technical conditions). It transforms discounted asset prices

into local martingales. Specifically, for X under Q, we may write,

dXt

Xt−
= (rt − qt) dt +

∫
x>−1

x µ̃Q(dt, dx), (5)

where rt and qt are the risk-free interest rate and dividend yield, respectively, and the martingale jump

measure µ̃Q(dt, dx) is now defined with respect to the risk-neutral compensator, νQ(dt, dx). As noted

previously, in the absence of arbitrage, there are characteristics of the physical price process (1) that

are preserved under the risk-neutral dynamics in (5). We identify these features below and utilize

them explicitly when designing our estimation methodology.

Given the risk-neutral probability measure Q, the theoretical value of European-style out-of-the-

money (OTM) options written onX is given by the conditional expectation of their discounted terminal

payoff,

Ot,k,τ =

 EQ
t

[
e−

∫ t+τ
t rs ds (Xt+τ −K)+

]
, if K > Ft,t+τ ,

EQ
t

[
e−

∫ t+τ
t rs ds (K −Xt+τ )+

]
, if K ≤ Ft,t+τ ,

(6)

where τ and K are the tenor and strike price of the option, Ft,t+τ denotes the futures price of X at

time t for the maturity date t+ τ , and we let k = ln(K/Ft,t+τ ) denote the log-moneyness. We further

define the Black-Scholes implied variance (BSIV) corresponding to Ot,k,τ by κt,k,τ , which represents a

convenient monotone transformation often used to quote option prices in practice.

We assume throughout that we have a valid parametric model for the risk-neutral law of X.

Specifically, let St denote a p × 1 vector of state variables, or factors, taking values in S ⊂ Rp, and

θ0 be the (true) value of a parameter vector of dimension q × 1. Then, we assume A+
t ≡ ξ1(St,θ0)

and A−t ≡ ξ2(St,θ0), where ξ1( · ) and ξ2( · ) are known functions.3 In addition, the risk-neutral jump

compensator is parametrized via,

νQ(dt, dx) =
(
ξ1(St,θ0) νQ+(x) 1{x>0} + ξ2(St,θ0) νQ−(x) 1{x<0}

)
dt⊗ dx, (7)

where νQ±(x) ≡ νQ±(x,θ0). It is important to note that, similarly to the spot volatility for Brownian

semimartingales, the stochastic jump intensities, A+
t and A−t are characteristics that are preserved

under the equivalent change of measure from P(0) to Q. Moreover, since the characterization of the

3We also assume that rt and qt are known functions of St and θ0.
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jump activity in definition (4) applies for each sample path (almost surely), the jump activity index

under Q is also given by β, because the null sets of P(0) and Q coincide. Hence, we treat β as a fixed

parameter that is part of the parameter vector θ0. We denote the remaining (q − 1) elements by θr0,

as the parameters β and θr0 play different roles in the econometric analysis below.

The density of the probability measure change is given by a stochastic exponential involving the

ratio νQ/νP which, to be well-defined, requires (see, e.g., Lemma III.5.17 in Jacod and Shiryaev (2003)),∫
x>0

(√
νQ+(x)−

√
νP+(x)

)2

dx < ∞ and

∫
x<0

(√
νQ−(x)−

√
νP−(x)

)2

dx < ∞. (8)

The above condition (along with νP ∼ νQ) is necessary and sufficient for the equivalence of P(0) and

Q in the Lévy case (where the jump compensator and drift are time invariant), see, e.g., Theorem

33.1 of Sato (1999). It severely restricts the wedge between νQ± and νP± around zero. To illustrate the

manifestation of this fundamental feature, we consider the CGMY specification for νQ± given by,

c±
e−λ±|x|

|x|α+1
, c± > 0, λ± > 0, α < 2. (9)

Now, if νP± is also generated by a CGMY model, but with possibly different parameters, then, given

the restriction (3), the condition (8) implies,

α = β and c+ = c− = Aβ. (10)

Note, in particular, that we have no restrictions for the parameters λ± governing the behavior of

the jump compensator in the tails. In contrast, the parameters controlling the behavior of the jump

compensator around zero are unchanged, when switching from P(0) to Q. This example illustrates that

νPt and νQt are essentially identical around zero, but can be very different away from zero.

Under the parametric model, the BSIV may be written as a function κ(k, τ,Zt,θ), with Zt and θ

denoting particular values of the state and parameter vectors, respectively. We let the parameter vector

take realizations on a compact subset θ ∈ Θ ⊂ Rq. In this setting, we may write κt,k,τ ≡ κ(k, τ,St,θ0),

implying that, conditional on the model parameters, option prices are functions of tenor, moneyness

and the state vector, with the latter driving all the time variation in the option prices. The evolution of

the state vector, St, can be specified very generally. We only require it to be an F (0)-adapted stochastic

process. The above option pricing framework complements the ones in Andersen et al. (2015) and

Andersen et al. (2017) by allowing the underlying asset price, X, to obey a pure-jump specification.

Hence, while the existing approaches accommodate general affine jump-diffusion representations, the

current setting enables us to handle non-Gaussian pure-jump option pricing models, e.g., the finite

moment log-stable model for the option surface in Carr and Wu (2003).
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3 Observation Scheme and High-Frequency Return Measures

This section describes the observation scheme for the options and high-frequency return data. The

latter is used to augment the option information set. Next, we introduce the nonparametric high-

frequency based estimators of the jump activity and jump intensities that are preserved under equiv-

alent measure changes. Finally, we summarize the asymptotic distribution for these estimators of the

spot jump characteristics. These results are needed to develop the joint inference for the pure-jump

risk-neutral parametric model based on the option and high-frequency data in Section 4.

3.1 Option Observation Scheme

The time span of the option panel is given by [0, T ] for some fixed and finite T > 0, and we assume ob-

servations are available from the option surface at the integer times t = 1, . . . , T . For each observation

date, the setting is similar to that in Andersen et al. (2015) and Andersen et al. (2017). Specifically,

the option data cover a fairly wide range of strikes and tenors, k and τ , respectively. That is, for each

t, we observe options {Ot,kj ,τj}j=1,...,Nt , where Nt is a large integer and the index j runs across the full

set of strike and tenor combinations. Moreover, the number of options for maturity τ is denoted by

N τ
t , so that, by definition, Nt =

∑
τ N

τ
t . We let N τ

t and Nt be F (0)
t -adapted.

We allow for considerable heterogeneity in the available option panel over observation times t

through, for example, variation over t in the available number of options, the observed strike-tenor

combinations (k, τ), and, for given τ , the density, or clustering, of available strikes in the log-moneyness

grid. In particular, we define the following asymptotic ratios N τ
t /Nt ≈ πτt and Nt/N ≈ ςt , where πτt

and ςt are positive-valued processes, and N is an unobserved number, representing the “average size

of the cross-section”.4 Moreover, for each combination of t and τ , we let k(t, τ) and k̄(t, τ) denote the

minimum and maximum log-moneyness, respectively, and define the F (0)
t –adapted grid of available

strikes as,

k(t, τ) < kt,τ (1) < kt,τ (2) < · · · < kt,τ (N τ
t ) < k̄(t, τ), with ∆t,τ (i) = kt,τ (i)− kt,τ (i− 1),

for i = 2, . . . , N τ
t . In analogy with in-fill asymptotics for high-frequency returns, our asymptotic scheme

does not expand the strike coverage, but instead sequentially adds new strikes within [k(t, τ), k̄(t, τ)],

such that ∆t,τ (i)
P−→ 0 as N →∞, while allowing the clustering of strike prices to differ across certain

regions of the strike range. That is, we let N τ
t ∆t,τ (i) ≈ ψt,τ (kt,τ (i)) for some positive valued process

ψt,τ (k). This heterogenous setting accommodates, e.g., the relatively high density of available OTM

put options “close to the money,” in contrast to the more sparsely available deep OTM call options.

4Again, all formal assumptions are deferred to Section 7.1.
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These facets impact the precision of our inference for the state vector over time, and the quantities

πτt , ςt and ψt,τ (k) appear explicitly in the asymptotic distribution theory, as detailed in Section 7.

In addition, Tt denotes the tenors available at time t, and the vectors kt = (k(t, τ))τ∈Tt and

kt =
(
k(t, τ)

)
τ∈Tt indicate the lowest and highest log-moneyness across all the available tenors at

time t. As described above, these quantities may vary randomly over time, thus accommodating any

pronounced shifts in the characteristics of the observed option cross-section across the sample.

Next, we stipulate that the BSIVs are observed with error, that is,

κ̂t,k,τ = κt,k,τ + εt,k,τ , (11)

where the measurement errors are defined on a space Ω(1) = 
t∈N,k∈R,τ∈ΓRt,k,τ , for Rt,k,τ ∈ R, with

Γ denoting the set of all possible tenors. Moreover, Ω(1) is equipped with a Borel σ-field F (1) as well

as a transition probability P(1)(ω(0), dω(w)) from the original probability space Ω(0) to Ω(1). Then, by

defining the filtration on Ω(1) via F (1)
t = σ(εs,k,τ : s ≤ t), we may write the filtered probability space

as (Ω,F , (Ft)t≥0,P), where Ω = Ω(0) × Ω(1), F = F (0) ×F (1),

Ft = ∩s>t F (0)
s ×F (1)

s , and P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)) .

Processes defined on Ω(0) and Ω(1), respectively, such as Xt and εt,k,τ , may trivially be viewed as

processes on Ω, and we assume that any local martingale and semimartingale properties are preserved

on the extended space. This decomposition of the probability space may be motivated as follows.

The option errors are defined on an auxiliary space Ω(1), equipped with a “large” supporting product

topology, since they may be associated with any strike, point in time and maturity. This space suffices

because, at each point in time, only a countable number of errors appear in the estimation. Finally,

since we want to accommodate dependence between εt,k,τ and the underlying process Xt, we define

the probability measure via a transition probability distribution from Ω(0) to Ω(1).

3.2 Inference for Jump Characteristics from High-Frequency Return Data

In addition to the panel of option prices, we utilize a second source of information in the estimation,

namely high-frequency data on the underlying asset X, to assist in the recovery of the state and

parameter vectors (or parts of them). Specifically, we shall estimate the total jump intensity,

At = A+
t +A−t ,

and the activity index, β, nonparametrically. To this end, we assume we have an equidistant high-

frequency recording of Xt at times 0, 1/n, . . . , i/n, . . . , T , so the increment size is ∆n = 1/n. Finally,

we define the logarithmic price and return by xt = log(Xt) and ∆n
i x = xi/n − x(i−1)/n.
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3.2.1 Jump Activity Estimation

We compute the jump activity index, β, using the estimator in Todorov (2015), which is based on

self-normalized statistics of the increments ∆n
i x −∆n

i−1x, and their empirical characteristic function

(ECF). The use of second-order differences alleviates the impact from the drift as well as the (pos-

sibly) asymmetric jump intensities. Moreover, the use of the ECF generates efficiency gains over

corresponding power variation-based methods, see, e.g., Todorov (2015).

To set the stage, let 1 < kn < bnT/2c be the block size. The first ingredient of the jump activity

estimator is a local power variation estimate of the total jump intensity At ,

V̂i(p) =
1

kn

i−1∑
j=i−kn

∣∣∆n
2jx−∆n

2j−1x
∣∣p , i = kn + 1, . . . , bnT/2c, (12)

which is then used to scale the differenced increments in the construction of the ECF as,

Ĉ(p, u) =
1

bnT/2c − kn

bnT/2c∑
i=kn+1

cos

(
u

∆n
2ix−∆n

2i−1x

(V̂i(p))1/p

)
, u ∈ R+. (13)

The above statistic differs slightly from its counterpart in Todorov (2015) by the summands in V̂i(p)

and Ĉ(p, u) having non-overlapping increments. This results in our jump activity estimator being

slightly less efficient, as we have fewer summands in Ĉ(p, u) for a given data set. This modification,

however, allows us to handle the more general setting, where the jump intensity around zero can be

asymmetric, i.e., we may have A+
t 6= A−t .

The asymptotic properties of Ĉ(p, u) naturally depend on the properties of V̂i(p). In particular,

consistency of the latter for the total intensity, At, requires kn →∞. Similarly, kn/n→ 0 is needed to

avoid time-variation in At generating a bias. Moreover, Todorov (2015) shows that kn/
√
n→ 0 suffices

to ensure that the sampling error biases in V̂i(p) are sufficiently small, and that a bias-corrected ECF,

C̃(p, u, β) = Ĉ(p, u) − Bn(p, u, β), (14)

accommodates a CLT.5 Next, to fully utilize the advantages of a characteristic function-based ap-

proach, we estimate β in two steps. The first step consists of constructing a preliminary activity index

estimate using the raw ECF,

β̂fs(p, u, v) =
log
(
− log

(
Ĉ(p, u)

))
− log

(
− log

(
Ĉ(p, v)

))
log(u/v)

, (15)

for some u, v ∈ R+ with u 6= v. Now, due to the asymptotic bias in Ĉ(p, u), induced by the sampling

errors in V̂i(p), the rate of convergence of the estimator β̂fs(p, u, v) will be suboptimal. Specifically,

5The exact expression for Bn(p, u, β) is provided in Section 7.2.
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we have β̂fs(p, u, v))− β = Op(1/kn), subject to certain regularity conditions on p and kn. Hence, we

follow Todorov (2015) and construct a second-step estimator based on the bias-corrected ECF as,

β̂(p, u, v) =
log
(
− log

(
C̃(p, u, β̂fs)

))
− log

(
− log

(
C̃(p, v, β̂fs)

))
log(u/v)

, (16)

for u, v ∈ R+ with u 6= v, and where β̂fs ≡ β̂fs(p, u, v) is used as short-hand notation.6 Similarly,

we often write β̂ = β̂(p, u, v) for brevity. As shown below, the estimator in equation (16) achieves an

almost optimal speed of convergence of 1/
√
n.

The asymptotic variance of β̂(p, u, v) depends only on β and the pair (u, v) while, due to the self-

normalization of the increments in C̃(p, u, β), it is independent of the stochastic intensities A±t . The

constants u and v can be chosen in such a way that the asymptotic limits of C̃(p, u, β) and C̃(p, v, β) are

sufficiently removed from 0 for all possible values of β. We conjecture more efficient implementations

of the estimator, in which u and v are selected adaptively based on a preliminary estimator of β, are

feasible, but we do not consider such extensions to avoid complicating the exposition.

3.2.2 Jump Intensity Estimation

This section provides a new nonparametric estimator of the total spot jump intensity. Unlike the jump

activity, we allow the jump intensity to change over time. Given our option observation scheme, we

need estimates for At at each t = 1, ..., T , a quantity for which no spot estimator has been developed

previously. We construct such estimators using local blocks consisting of pn differenced and non-

overlapping increments preceding the integer time points.

One candidate estimator of At is given by the local power variation V̂i(p) (for appropriate choice of

i). However, as illustrated by Todorov (2015) in the context of analyzing the jump activity index, esti-

mators based on the empirical characteristic function can provide nontrivial efficiency improvements.

Consequently, we propose the following estimator,

Ât(u) = − 1

uβ̂
log

 1

pn

∑
i∈Int

cos
(
u∆−1/β̂

n (∆n
2ix−∆n

2i−1x)
) , t = 1, ..., T, (17)

where Int = {btn/2c − pn + 1, ..., btn/2c}, and pn is a deterministic sequence satisfying pn → ∞ and

pn/n → 0. Note that, at the expense of a more complicated analysis, one may further generalize

equation (17) to separately identify A+
t and A−t . We leave such an extension for future research.

6Note that β̂fs is just one example of a first-stage estimator. Under suitable regularity conditions, we could also apply,
e.g., power variation-based estimators such as those in Ait-Sahalia and Jacod (2009) or Todorov and Tauchen (2011a).
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3.2.3 Inference for Spot Jump Characteristics from High-Frequency Return Data

We need some additional notation to summarize the results regarding the asymptotic distribution of

the nonparametric high-frequency estimators for the equivalent-measure invariant spot jump features.

First, we define the T ×1 vectors Â = (Ât)
T
t=1 and A = (At)

T
t=1. Next, we note that the convergence of

the nonparametric estimators (after centering around their probability limits) is stable. This is denoted

by
L−s−−→. Stable convergence is stronger than the usual notion of convergence and implies that the

convergence holds jointly with any bounded random variable defined on the original probability space.

This stronger form of convergence is critical for the derivation of the asymptotic distribution for the

PLS estimator in Section 4.

Theorem 1. Suppose Assumption 1 in Section 7.1 holds. Moreover, let the power p as well as the

sequences kn and pn in equations (12), (13), and (17) satisfy the following conditions,

(R1) pn �
√
n,

(R2) ββ′

2(β−β′) ∨
β−1

2 < p < β
2 ,

(R3) kn � n$ with p
β ∨

1
3 < $ < 1

2 .

Then, it follows  √nT 0

0
√
pn

 β̂ − β

Â−A

 L−s−−→

 Ψβ 01×T

0T×1 ΨA

×
 Yβ

YA

 ,

where the scalar Yβ and the T × 1 vector YA are standard Gaussian, defined on an extension of the

original probability space, with each of them independent of each other as well as of F . Moreover, the

scalar Ψβ and the T × T matrix ΨA = diag(Ψ1, . . . ,ΨT ) are defined in Section 7.2.

Theorem 1 extends results from Todorov (2015) in two directions. First, we allow for asymmetry

in the jump intensity around zero, i.e., we accommodate the setting A+
t 6= A−t . Second, in addition

to estimating β, we consider estimates of the spot quantity At at each point in time t. Naturally, the

rate of convergence of At is governed by the number of increments pn used in its estimation, which

is much smaller than the total number of high-frequency increments on the interval [0, T ] utilized in

the estimation of β. Hence, as expected, β̂ converges at a faster rate than Â. Because of this feature,

the use of β̂ in the construction of Â has no effect on the limiting result in Theorem 1. We note that

this is very different from the case where one aims to recover the integrated intensity,
∫ T

0 Asds. The

asymptotic distribution of the latter is dominated by the use of β̂ in its construction and, as a result,

this generates perfect asymptotic dependence between the integrated jump intensity estimator and the
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estimator of the jump activity. In our case, this asymptotic degeneracy is avoided by the slower rate

of convergence of the jump intensity estimator. The choice of pn in R1 is standard for estimation of

spot quantities (e.g., spot diffusive volatility). It reflects a balance between the bias in the recovery of

the spot jump intensity, caused by the time-variation in the latter, and the variance in its estimation.

The asymptotic distribution of β̂ is Gaussian with constant variance. This is expected as C̃(p, u, β)

is self-normalized, annihilating the effect from the time-variation in A±t on its limiting distribution.

On the other hand, the asymptotic distribution of Â is mixed Gaussian, and hence the precision in

the recovery of A depends on its random realization.

Conditions R2 and R3 are exactly as in Todorov (2015), determining the range of possible choices

for the power and block size of the local power variation statistic used to normalize the differenced

increments which, in turn, are used in the construction of β̂. In general, it is sensible to select the

block size parameter, $, very close to 1/2. For the power p, a feasible choice is setting it arbitrarily

close to, yet above, 1/2. In principle, given that the unknown parameter β appears in the restrictions

R2 and R3, one may consider an adaptive choice for kn and p. Such considerations are left for future

work.

Finally, we point out that Theorem 1 is a key building block for the derivation of the asymptotic

distribution of our PLS estimator. If one exploits alternative estimators of β and A, e.g., adapted

to settings in which X might contain a diffusive component, then, in order to adopt the asymptotic

analysis of Theorem 3 below, one simply needs to provide an equivalent result to Theorem 1 for the

chosen nonparametric high-frequency estimator.

4 Inference for Pure-Jump Models from Option Panels

The material in this section constitutes the core of our econometric analysis. We introduce a new

penalized least squares (PLS) estimator for option panels associated with pure-jump parametric models

for the underlying asset. We motivate the design of the estimator and develop the necessary asymptotic

theory for feasible inference. The PLS estimator utilizes information from the high-frequency returns

via the estimators for the jump activity and the jump intensity introduced in Section 3. In particular,

the joint CLT for the nonparametric high-frequency jump estimators in Section 3.2.3 is an important

ingredient in the derivation of the asymptotic distribution for our new PLS estimator.

4.1 Penalized Least Squares

In designing the PLS estimator for option price panels generated from pure-jump models, we use

several key observations from Sections 2 and 3. First, given the signal-plus-noise decomposition of

observed BSIVs in equation (11), it is natural to estimate the parameter, θ0, and the latent factor
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realizations, S = {St}Tt=1, via least squares. Second, as discussed in Section 2.2, the jump activity

index, β, and the total spot jump intensity, At = A+
t + A−t , are preserved under change of measure

from P to Q. These quantities may be recovered nonparametrically from high-frequency return data

with the estimators presented in Sections 3.2.1 and 3.2.2, and we shall utilize this additional source of

information in the estimation.

Formally, we let θ0 = (θr0, β) and St = (Srt , At), t = 1, . . . , T , denote decompositions of the latent

parameter and state vector, respectively, and let θ = (θr,B) and Zt = (Zr
t ,At) be corresponding

generic vectors. Then, by defining the T × p matrix of factor realizations as Z = {Z ′t}Tt=1, we write

the objective function, for some finite constants λβ ≥ 0 and λA ≥ 0, as

L (Z,θ) ≡
T∑
t=1

Lt (Zt,θ) + λβ nT
(
β̂ − B

)2
, with (18)

Lt (Zt,θ) ≡


Nt∑
j=1

(
κ̂t,kj ,τj − κ(kj , τj ,Zt,θ)

)2
+ λA pn

(
Ât −At

)2

 ,

using Ât ≡ Ât(u) as additional short-hand notation. The first part of the objective function is the

L2 distance between observed and model-implied option prices (quoted in BSIV). The second and

third parts are penalization terms for the deviation of the model-implied jump activity index and

jump intensities from direct, but noisy, nonparametric measures of them from high-frequency return

data. These penalization terms aid identification and estimation of (parts of) the parameter and state

vectors, which are obtained as follows,7

(θ̂, Ŝ) = argmin
θ∈Θ,Z∈ST

L (Z,θ) , S ∈ Rp. (19)

Our new estimator differs in several respects from the corresponding PLS estimators explored by

Andersen et al. (2015) and Andersen et al. (2017). The latter exploit different asymptotic designs

and, more fundamentally, they assume that the underlying price process contains a diffusion, i.e., a

martingale component driven by a Brownian motion. As a result, for those estimators the penalization,

at each option observation time, refers to deviations between the model-implied spot volatility and

a nonparametric measure of spot volatility obtained from high-frequency return data. The analogue

to the scaling of Brownian motion with spot volatility in the pure-jump setting is the scaling of the

martingale jump measure by the jump intensity At (or by A+
t and A−t separately for positive and

negative jumps). In contrast, the inclusion of a penalty for the deviation between the model-implied

and high-frequency return estimate for the jump activity index is unique to the pure jump setting. For

7The use of a noisy measure of the state vector (or a part of it) in the design of an estimator also bears resemblance with
the FAVAR approach in Bernanke et al. (2005), who augment a VAR of economic variables with a noisy estimate of a
latent factor that is related to the variables in the system.
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jump-diffusive models, the activity index is two (β ≡ 2) by assumption, as the presence of the Wiener

component is stipulated as an integral part of the model specification.8 In our pure-jump scenario,

we assume 1 < β < 2, but do not fix the index to any given value, so it becomes a key parameter

that must be estimated from the option and high-frequency return sample. Hence, the added penalty

term arises naturally from the restriction that this index also is invariant to equivalent martingale

measure transformations. Another major difference to the earlier PLS estimators is that we avoid

placing restrictions on the relative information content in high-frequency return and option data.9

That is, we allow for arbitrary relations between N , n and pn. This enables the procedure to adapt

(asymptotically) to the relative informativeness of the different data sources. Nevertheless, one should

keep in mind that the option data, generally, is required in the estimation of the risk-neutral dynamics,

since the high-frequency return data only aid in the estimation of those parts of the parameter and

state vectors that are invariant across the two probability measures.

4.2 Consistency of the PLS Estimator

Exploiting Theorem 1, we may now establish the consistency of θ̂ and Ŝ = (Ŝt)
T
t=1.

Theorem 2. Suppose the assumptions 1-5 in Section 7.1 as well as R1-R3 of Theorem 1 hold. Then,

for some T ∈ N, it follows that (θ̂, (Ŝt)
T
t=1) exists with probability approaching 1, and further that,∥∥∥θ̂ − θ∥∥∥ P−→ 0,

∥∥∥Ŝt − St∥∥∥ P−→ 0, t = 1, . . . , T.

Theorem 2 shows that we can consistently recover the risk-neutral model parameters and the state

vector under general conditions. As explained above, one major departure from the equivalent results

in Andersen et al. (2015) and Andersen et al. (2017) arises from the inclusion of information from

high-frequency data about both the parameter and state vectors in the estimation. Of course, if we

set λβ = λA = 0, we will not need Theorem 1 and may exclude the rate conditions R1-R3.

4.3 Asymptotic Distribution of the PLS Estimator

The central limit theory for the parameters and the state vector realizations depends on the relative

informativeness of the options and high-frequency data, respectively. To highlight this feature, let us,

again, make the decompositions θ̂ = (θ̂r, B̂) and Ŝ = (Ŝr, Â). Moreover, we define n̄ = n ∨ N and

p̄n = pn ∨N as well as the scaling matrix,

Wn ≡ diag(W n
θr0
, Wn

β , W
n
Sr , W

n
A ), (20)

8The activity index is defined as the infimum over the set of powers for which the power variation is finite. When the
price contains a non-vanishing diffusion component, the power variation for any power below 2 is infinite.

9In comparison to Andersen et al. (2015) and Andersen et al. (2017), the scaling 1/Nt has been removed from the objective
function in order to simplify the treatment of the (possibly) different rates of convergence of parts of the parameter and
state vectors.
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where W n
θr0

= ιq−1/
√
N , Wn

β = 1/
√
n̄, W n

Sr = ιT (p−1)/
√
N , and W n

A = ιT /
√
p̄n contain information

about the convergence rates of different parts of the parameter and state vectors, while ιd denotes a

d-dimensional vector of ones. We may now state the limiting distribution result for our PLS estimator.

Theorem 3. Under assumptions 1-6 in Section 7.1 as well as R1-R3 of Theorem 1, we have,

W−1
n


θ̂r − θr0
B̂ − β

Ŝr − Sr

Â −A


L−s−−→ I−1 Ω1/2 ×


Eθr0

Eβ

ESr

EA

 ,

where Eβ and the (q − 1)× 1, T (p− 1)× 1, and T × 1 vectors Eθr0
, ESr , and EA, respectively, consist

of standard Gaussian random variables defined on an extension of the original probability space, with

each of them independent of the others as well as of the filtration F . The Hessian and asymptotic

covariance matrices, I and Ω, are defined in equations (30) and (31) of Section 7.3.

The limiting result in Theorem 3 shows different rates of convergence for the components of the

PLS estimator. In particular, the estimates for the components of the parameter and state vectors for

which we have no information from the high-frequency returns, i.e., θ̂r and Ŝr, the rate of convergence

is simply
√
N (recall from Section 3.1 that N denotes the average size of the option cross-section).

On the other hand, the rate of convergence for the jump activity parameter, β, is determined by the

faster of the
√
N and

√
n rates associated with utilizing the information from the parametric model

as well as the option panel and the nonparametric estimator based on the high-frequency return

data, respectively. In that regard, we note that the scaling of the penalization terms in the objective

function in equation (18) plays an important role, ensuring that the latter have a negligible effect in the

estimation, when the high-frequency data is less informative in relative terms than the option data (for

the jump activity parameter), i.e., when n� N . In the opposite case, i.e., when n� N , the scaling of

the penalty term in the objective function (corresponding to β) guarantees that the latter determines

the asymptotic behavior of the jump activity estimator. In the borderline case of n � N , both the

high-frequency return and option data contribute to the asymptotic variance of β, and this is reflected

in their joint determination of the terms in I and Ω that correspond to B̂. Similar comments apply to

the estimator of the jump intensity, Â. In this case, the relevant comparison is the convergence rate

of
√
N , from utilizing the option data, versus the

√
pn rate, when using high-frequency data.

Since pn/n → 0 by assumption R1, Theorem 1, if N � n, then N � pn. Hence, if the option

data is more efficient for estimation of β, it is also more efficient for recovery of A. In this case,

all components of θ̂ and Ŝ converge at the rate
√
N . In contrast, if pn � N , then n � N , so the
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high-frequency data is more informative about both the jump activity and intensity, each component

of the partitioned parameter vector and state vector realization will converge at different rates.

Importantly, our PLS estimators of β and A automatically adapt to the situation at hand. When

the high-frequency data is more informative than the option data (pn � N or n � N), then the

PLS estimator for these quantities is asymptotically equivalent to their nonparametric high-frequency

measures. On the other hand, when the option data (together with the parametric model) carries

more information than the high-frequency return data about either β or A (N � n or N � pn), then

the corresponding PLS estimator behaves as if only the option data is used for the estimation of this

quantity. Consequently, the user does not need to take an a priori stand on whether the option or the

high-frequency data is more informative about β or A, which is very convenient from a practical point

of view. In the boundary cases of either N � n or N � pn, both the option and high-frequency return

data contribute to the estimation of (parts of) the parameters and state vectors. In this case, one may

choose λβ and λA in a way that accounts for the difference in the variance of the option errors and the

asymptotic variances of the high-frequency estimators. This generates further gains in efficiency and

renders the PLS estimator free of tuning parameters (other than those needed for the construction of

the nonparametric high-frequency estimators). We present the details of such an adaptive choice for

λβ and λA in the next section.

In a typical application, the state vector includes separate intensities A+
t and A−t which, in turn,

may be determined by additional factors, in analogy with multi-factor stochastic volatility models. In

this case, if pn � N , then A+
t and A−t will each be estimated at the slower rate

√
N , and their joint

distribution will be degenerate. Their sum, however, At = A+
t + A−t is estimated at the faster rate

√
pn. In our statement of Theorem 3, we reparametrize the state vector through separating At in a

manner so as to avoid degeneracy of the limiting distribution. This enables one to characterize the

limiting distribution of arbitrary transformations of the state vector. This situation is similar to other

econometric settings, where the convergence rates of components within a joint system may differ, e.g.,

inference for autoregressive processes around deterministic time trends, see, e.g., Sims et al. (1990).

Finally, the asymptotic distribution of both the parameters and the state vector is generally mixed

Gaussian. That is, the matrixes I and Ω are likely random. This is due to the mixed-Gaussian distri-

bution for the estimates ofA from the high-frequency data as well as the conditional heteroskedasticity

in the option observation error. Since the convergence in Theorem 3 is stable, this, however, does not

constitute a major practical difficulty. All that is needed for feasible inference based on the limit result

in Theorem 3 is consistent estimators for I and Ω, which are easy to construct directly from standard

least squares procedures. For brevity, we omit the details.
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5 Weighted Penalized Least Squares

The definition of the PLS estimator in Section 4.1 involves the penalty weights λβ and λA. We

now propose suitable selection procedures for these values, period-by-period, that generate efficiency

improvements. Moreover, we discuss how to weight the elements of the L2 part of the objective

function in a manner analogous to classical weighted least squares. We label the combination of such

weighting with the suitable selection of the λβ and λA the weighted PLS (WPLS) estimator.

First, let Ψ̂β and Ψ̂t, t = 1, . . . , T , be plug-in estimators of Ψβ and Ψt, respectively, where we

recall that ΨA = diag(Ψ1, . . . ,ΨT ), and further note that the plug-in estimators are defined explicitly

in Section 7.4. We then readily obtain that Ψ̂β
P−→ Ψβ and Ψ̂t

P−→ Ψt from Theorem 3 in conjunction

with the continuous mapping theorem. Now, since the size of the F-conditional variance of the errors

stemming from the two penalization terms generally are unknown a priori, we propose to standardize

their contribution to the objective function through estimates of the F-conditional asymptotic vari-

ances of the nonparametric estimators from high-frequency data, provided by Theorem 1. This will

imply that their respective contributions to the objective function are similar in scale.

Next, concerning the optimal weighting of the elements in the option part of Lt (Zt,θ), we ideally

would like to standardize these by an estimate of the F-conditional variance of the BSIV observation

errors in equation (11), defined by φt,k,τ in Assumption 6 of Section 7.1. However, despite such

a procedure being feasible, we simplify the analysis and assign identical weights to all options on

a given day. Although this procedure neglects potential heteroskedasticity in the strike and tenor

dimensions of the option panel, it still generates non-trivial efficiency improvements due to pronounced

heteroskedasticity in the F-conditional option error variances over time. Moreover, it is sufficient to

ensure that all components of the (weighted) objective function are of comparable scale. Formally, we

use,

φ̂t =
1

Nt

Nt∑
j=1

(
κ̂t,kj ,τj − κ(kj , τj , Ŝt, θ̂)

)2
, t = 1, . . . , T, (21)

where Ŝt and θ̂ are based on first-stage PLS estimation.10 As one would expect, φ̂t is a consistent

estimator of the cross-sectional average of φt,k,τ , which is generally random, at a given point in time.

Now, using φ̂t, Ψ̂β and Ψ̂t, we define the WPLS objective function as,

Lw (Z,θ) ≡
T∑
t=1

Lwt (Zt,θ) + nT

(
β̂ − B

)2

w(Ψ̂β)
, with (22)

10A natural candidate is the estimator without penalization, i.e., one that is purely option based, as this circumvents the
issue of choosing the relative weight of the penalty terms.
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Lwt (Zt,θ) ≡


Nt∑
j=1

(
κ̂t,kj ,τj − κ(kj , τj ,Zt,θ)

)2
w(φ̂t)

+ pn

(
Ât −At

)2

w(Ψ̂t)

 ,

where the function w(x) ≥ ε, for some ε > 0, is a twice differentiable function on R+ with bounded

first and second derivatives. Smooth approximations of x ∨ ε are examples of such functions. Ideally,

we would like to choose w(x) = x, but we rule this case out when developing our general distribution

theory for WPLS to avoid imposing boundedness from below on φt,k,τ as well as on the asymptotic

variances Ψβ and Ψt. Nonetheless, we consider this scenario in a corollary below, which results in a

simplification of the expression for the limiting distribution.

Given the objective function in equation (22), the WPLS estimator is defined as,

(θ̂w, Ŝw) = argmin
θ∈Θ,Z∈ST

Lw (Z,θ) , S ∈ Rp. (23)

The procedure of weighting the first part of the criterion function by the size of the average errors

at each observation time for the option panel, using equation (21), is reminiscent of the approach in

Andersen et al. (2017). As such, it should provide similar benefits in terms of efficiency gains. In

contrast, the importance of additionally using Ψ̂β and Ψ̂t are much larger in our pure-jump setting.

This follows from the fact that the“regularization”devices naturally are of a different scale in the pure-

jump setting. For the diffusive case, the noisy spot variance measure is automatically scaled sensibly,

as the options (quoted in BSIV), and therefore, all parts of the PLS objective function in this case are

in terms of “return variance measures.” However, this is not true for equation (18), where the three

components reflect return variances, their jump activity index and their jump intensities. Hence, the

use of the weighted objective function (23) will generate a more stable numerical estimation procedure,

in addition to providing asymptotic efficiency gains. Finally, we emphasize that the weighting in

equation (22) is only feasible due to our stable central limit theory in Theorem 3, allowing for estimation

and utilization of weights that are asymptotically random.

We are now in position to state our asymptotic distribution result.

Theorem 4. Suppose the conditions of Theorem 3 hold. Moreover, let θ̂w = (θ̂wr , B̂w) and Ŝw =

(Ŝwr , Âw) denote the WPLS estimators of θ0 = (θr0, β) and S = (Sr,A), respectively, then a conver-

gence result similar to that in Theorem 3 holds as long as I and Ω are replaced with Iw and Ωw,

which are defined in equation (34) of Section 7.4.

Corollary 1. Suppose the assumptions of Theorem 4 hold and, in addition, that the following lower

bound conditions are satisfied, Ψβ > ε, inft∈1,...,T Ψt > ε, and,

inf
t∈1,...,T

inf
τ∈Tt

inf
k∈[k(t,τ),k̄(t,τ)]

φt,k,τ > ε, for some finite ε > 0, with φt,k,τ = φt.
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Finally, letting w(x) = x, it then follows that,

W−1
n


θ̂wt − θr0
B̂w − β

Ŝwr − Sr

Âw −A


L−s−−→ (Iw)−1/2 ×


Eθr0

Eβ

ESr

EA

 ,

where Eβ and the (q − 1) × 1, T (p − 1) × 1, and T × 1 vectors Eθr0
, ESr , and EA, respectively,

consist of standard Gaussian random variables defined on an extension of the original probability

space, independent of each other as well as of F , and Iw is defined in equation (34) of Section 7.4.

6 Conclusion

In this paper, we develop inference techniques for noisy option panels with a fixed time span and

an asymptotically increasing cross-sectional dimension in which the option prices are generated from

a parametric model for the risk-neutral dynamics of the underlying asset that is of pure-jump type.

The option-based information set used in the estimation is augmented by high-frequency return data,

covering the time span of the option panel. The return data is used to construct nonparametric

measures of the jump activity parameter as well as the vector of jump intensity realizations at the

integer times, where the cross-sections of the option panel are observed. Estimation of the risk-

neutral parameters and the state vector realizations of the model is carried out via penalized least

squares, minimizing the L2 distance between observed and model-implied option prices while penalizing

deviations of the model-implied jump activity and jump intensities from nonparametric estimates

of them based on the high-frequency data. The distribution theory for estimates of different parts

of the parameter and state vectors differs depending on the relative informativeness of the high-

frequency return data (through the nonparametric jump measures) and the option data (via the

parametric model). Importantly, our PLS estimator adapts to the situation at hand without any need

for a priori assessment of what data source is more efficient for estimation. In addition, while the

asymptotic distributions may appear complex, involving mixed-Gaussian limiting distributions and

stable convergence, the application of the results for practical inference is relatively straightforward,

involving only quantities that arise naturally from estimation through nonlinear least squares.

The results complement corresponding inference techniques for noisy option panels developed in

Andersen et al. (2015) and Andersen et al. (2017) for the case where the asset returns are governed by

a jump-diffusion. These procedures impose the restriction that the vector of diffusive spot volatility

realizations is invariant across the risk-neutral and statistical measure. This property is replaced by

the analogous restriction that the jump intensity at each observation time is identical across the two
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measures in the pure jump case. The additional constraint that the jump activity index is identical

across the two measures has no parallel in the diffusive scenario. The imposition of these no-arbitrage

conditions as an integral part of a formal inference procedure for the risk-neutral dynamics and the

state vector realizations from noisy option and high-frequency return observations is novel.

Finally, we provide an extension of the PLS estimator involving weighting of the individual terms

in the objective function by their asymptotic variances. This WPLS estimator provides additional

robustness and efficiency, which is likely more critical in the pure jump setting than for the jump-

diffusive models explored through similar techniques previously in the literature.

7 Proofs

This section states the formal assumptions for the theoretical analysis and provides proofs of the

asymptotic results. We start by introducing some convenient notation. We adopt the shorthand

notation, κ̂t,kj ,τj ≡ κ̂t,j , εt,kj ,τj ≡ εt,j , and κ(kj , τj ,Z,θ) ≡ κj(Z,θ). The Hadamard product is

indicated by ◦; and the matrix norm used is the Frobenius (or Euclidean) norm which, for an m× n
dimensional matrix A, may be written as ||A|| =

√∑
i,j a

2
i,j =

√
Tr(AA′). Moreover, K denotes

a generic constant, which may take different values in different places, and we signify conditional

expectations by Eni ( · ) ≡ E( · |Fi∆n). Finally, note that (stochastic) orders sometimes refer to scalars,

vectors, and sometimes to matrices; we refrain from making any distinctions among these.

7.1 Assumptions

Below, we let (E, E) denote an auxiliary measure space on the original filtered probability space(
Ω,F , (Ft)t≥0,P

)
.

Assumption 1 (Price Process). The price process of the underlying asset Xt satisfies the conditions

(1)-(3) of Section 2.1. Moreover, letting qt = {αt, A+
t , A

−
t }, these processes obey,

qt = q0 +

∫ t

0
bqs ds +

∫ t

0

∫
E
κ(δq(s, x)) ϑ̃(ds, dx) +

∫
E
κ′(δq(s, x))ϑ(ds, dx) (24)

where κ(x) = x is the usual truncation function, for which κ(−x) = −κ(x) and κ′(x) = x− κ(x). The

process (24) and its remaining components satisfy,

(i) |qt|−1 and |qt−|−1 are strictly positive;

(ii) ϑ̃ is the associated martingale measure of ϑ, which is a Poisson measure on R+ × E, having

arbitrary dependence with the jump measure µ, equipped with compensator dt ⊗ λ(dx) for some

σ-finite measures λ on E;
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(iii) let γk(x) be a deterministic function on R with
∫
R(|γk(x)|r+ι∧1)λ(dx) <∞ for some arbitrarily

small ι > 0 and some 0 ≤ r ≤ β, and furthermore let Tk be a sequence of stopping times

increasing to +∞, then δq(t, x) is assumed to be predictable, left-continuous with right limits in

t, and with |δq(t, x)| ≤ γk(x) for all t ≤ Tk;

(iv) bqt is an Itô semimartingale having dynamics as specified in equation (24) with coefficients satis-

fying conditions analogous to conditions (ii) and (iii) above.

Assumption 2 (Sampling scheme). As N → ∞, pn → ∞, and n → ∞ with pn/n → 0, as well as

with n̄ = n ∨N and pn = pn ∨N , we have for each t = 1, . . . , T and each maturity τ ∈ Tt that,

(i) N τ
t /Nt

P−→ πτt and Nt/N
P−→ %t where πτt and %t are adapted to F (0)

t with inft∈[1,T ],τ∈Tt π
τ
t > 0 and

supt∈[1,T ],τ∈Tt π
τ
t <∞ as well as inft∈[1,T ] %t > 0 and supt∈[1,T ] %t <∞.

(ii) For the grids of strike prices, let ik = min{i ≥ 2 : kt,τ (i) ≥ k}, then uniformly for each k ∈
[k(t, τ), k̄(t, τ)], we have N τ

t ∆t,τ (ik)
P−→ ψt,τ (k), where ψt,τ (k) is some F (0)

t -adapted process with,

inf
t∈[1,T ], τ∈Tt, k∈[k(t,τ),k(t,τ)]

ψt,τ (k) > 0, and sup
t∈[1,T ], τ∈Tt, k∈[k(t,τ),k(t,τ)]

ψt,τ (k) <∞.

(iii) Finally, we have the following finite relative limits for N , pn, n, n̄, and pn,

N

n̄
→ $1 ≥ 0,

n

n̄
→ $2 ≥ 0,

N

pn
→ ζ1 ≥ 0, and

pn
pn
→ ζ2 ≥ 0.

Assumption 3 (Identification). For every ε > 0 and θ ∈ Θ, we have, almost surely, for N sufficiently

large,

inf
(
⋂T
t=1{‖Zt−St‖}∩{‖θ−θ0‖≤ε})c

T∑
t=1

Nt∑
j=1

(κ(kj , τj ,St,θ0)− κ(kj , τj ,Zt,θ))2

Nt
> 0.

Assumption 4 (Differentiability). The function κ(τ, k,Z,θ) is twice continuously differentiable in

its arguments.

Assumption 5 (Observation error: Consistency). For every ε > 0, t = 1, . . . , T , and any positive-

valued F (0)
T -adapted process ζt(k, τ) on the product space R× Tt, which is continuous in its first argu-

ment, we have for N →∞ and θ ∈ Θ,

sup
{‖Zt−St‖>ε}∪{‖θ−θ0‖>ε}

∑Nt
j=1 ζt(k, τ) (κ(kj , τj ,St,θ0)− κ(kj , τj ,Zt,θ)) εt,kj ,τj∑Nt

j=1 (κ(kj , τj ,St,θ0)− κ(kj , τj ,Zt,θ))2

P−→ 0.

Assumption 6 (Observation error: Central limit theory). For the error process, εt,k,τ , it follows,

(i) E(εt,k,τ |F (0)) = 0,
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(ii) E(ε2t,k,τ |F (0)) = φt,k,τ , with φt,k,τ being a continuous function in its second argument,

(iii) εt,k,τ and εt′,k′,τ ′ are independent conditional on F (0), whenever (t, k, τ) 6= (t′, k′, τ ′),

(iv) E(|εt,k,τ |4|F (0)) < ∞, almost surely.

These assumptions are similar to those in Andersen et al. (2015) and Todorov (2015) for the option

panel and price process, respectively. The main departure is Assumption 2(iii), which is needed to

accommodate a central limit theorem with different rates of convergence for different parts of the

parameter and state vector. Its impact is detailed in Section 4.3.

7.2 Definitions for the High-Frequency Estimators

This section provides additional details for the activity index and jump intensity estimators, both for

their definitions and for developing their joint asymptotic theory.

Exact expression for Bn(p, u, β). First, let Sβ be a β-stable random variable with characteristic

function E(eiuSβ ) = exp(−|u|β) and denote µp,β = (E|Sβ|p)β/p. With this notation, we set,

ς(p, u, β) =

cos

 uSβ

µ
1/β
p,β

− C(p, u, β),
|Sβ|p

µ
p/β
p,β

− 1

′ , u ∈ R+,

where the standardized characteristic function C(p, u, β) is defined as,

C(p, u, β) = e−Cp,βu
β
, with Cp,β =

[
2p Γ((1 + p)/2) Γ(1− p/β)√

π Γ(1− p/2)

]−β/p
, (25)

and Γ( · ) being the gamma function. Next, for u, v ∈ R+, we then let,

ζ(p, u, v, β) = E
(
ς(p, u, β) ς(p, v, β)′

)
,

G(p, u, β) =
β

p
e−Cp,βu

β
Cp,βu

β, H(p, u, β) = G(p, u, β)

(
β

p
Cp,β u

β − β

p
− 1

)
.

Finally, we may write the bias-correction Bn(p, u, β) as,

Bn(p, u, β) = H(p, u, β) ζ(2,2)(p, u, u, β)/(2kn). (26)

Exact expressions for Ψβ and Ψt. Using the definitions above, we may readily define the

asymptotic variances for the nonparametric high-frequency measures in Theorem 1 as,

Ψβ =
2

log2(u/v)

[
ζ(1,1)(p, u, u, β)

log2(C(p, u, β)) C2(p, u, β)
+

ζ(1,1)(p, v, v, β)

log2(C(p, v, β)) C2(p, v, β)

− 2
ζ(1,1)(p, u, v, β)

log(C(p, u, β)) C(p, u, β) log(C(p, v, β)) C(p, v, β)

]
,

(27)

Ψt =
e2Atuβ

u2β

(
1 + e−2βAtuβ

2
− e−2Atuβ

)
, t = 1, ..., T. (28)
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7.3 Definitions for the Hessian and Asymptotic Variance

This section defines the empirical and limiting Hessian matrices, which are used in the proof and

statement of Theorem 3. The definition of asymptotic covariance matrix in Theorem 3 is also given.

Empirical Hessian matrix. For generic values of S and θ0, Z and θ, respectively, define the

Hessian,

H(Z,θ) ≡


Hθr0

(Z,θ) Hθr0β
(Z,θ) Hθr0S

r(Z,θ) Hθr0A
(Z,θ)

Hθr0β
(Z,θ)′ Hβ(Z,θ) HβSr(Z,θ) HβA(Z,θ)

Hθr0S
r(Z,θ)′ HβSr(Z,θ)′ HSr(Z,θ) HSrA(Z,θ)

Hθr0A
(Z,θ)′ HβA(Z,θ)′ HSrA(Z,θ)′ HA(Z,θ)

 , (29)

whose elements along the diagonal, that is, the (q−1)×(q−1) matrix Hθr0
(Z,θ), the scalar Hβ(Z,θ),

the T (p−1)×T (p−1) matrix HSr(Z,θ), and the T ×T matrix HA(Z,θ), are defined as HSr(Z,θ) ≡
diag

(
HSr1

(Z1,θ), . . . ,HSrT
(ZT ,θ)

)
, HA(Z,θ) ≡ diag (HA1(Z1,θ), . . . ,HAT (ZT ,θ)), and with,

Hθr0
(Z,θ) ≡

T∑
t=1

Nt∑
j=1

∇θr0κj(Zt,θ)∇θr0κj(Zt,θ)′,

Hβ(Z,θ) ≡
T∑
t=1

Nt∑
j=1

∇βκj(Zt,θ)∇βκj(Zt,θ)′ + λβ nT,

HSrt
(Zt,θ) ≡

Nt∑
j=1

∇Srκj(Zt,θ)∇Srκj(Zt,θ)′,

HAt(Zt,θ) ≡
Nt∑
j=1

∇Aκj(Zt,θ)∇Aκj(Zt,θ)′ + λA pn,

for t = 1, . . . , T . The remaining elements of the (q+Tp)× (q+Tp) Hessian matrix (29) have the same

generic structure as the explicated diagonal elements and are, thus, defined analogously.

Limiting Hessian matrix. The limiting Hessian matrix has the same block-wise structure as

equation (29) and may be written,

I = L1 ◦M + L2 ◦Λ, (30)

where the first scaled matrix in the decomposition, L1 ◦M, is defined as,

L1 ◦M ≡


Mθr0

√
$1Mθr0β

Mθr0S
r

√
ζ1Mθr0A

√
$1M′

θr0β
$1Mβ

√
$1MβSr

√
$1ζ1MβA

M′
θr0S

r

√
$1M′

βSr MSr
√
ζ1MSrA

√
ζ1M′

θr0A

√
$1ζ1M′

βA

√
ζ1M′

SrA ζ1MA


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where, e.g., the (q − 1)× T matrix Mθr0A
=
(
Mθr0A1 , . . . ,Mθr0AT

)
has column vectors,

Mθr0At
≡ %t

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
∇θr0κ(k, τ,St,θ0)∇Aκ(k, τ,St,θ0)′ dk,

for t = 1, . . . , T . The remaining elements of M are defined similarly, the only change being the

respective gradient arguments. The second term in the decomposition (30), L2 ◦Λ, is given by,

L2 ◦Λ ≡ diag
(
0(q−1)×1, $2 λβ T, 0T (p−1)×1, ζ2 λA ιT

)
,

with, again, 0d and ιd being d-dimensional vectors of zeros and ones, respectively.

Limiting covariance matrix. The (q+ Tp)× (q+ Tp) limiting covariance may be decomposed,

similarly to equation (30), as,

Ω = L1 ◦ C + L2 ◦Λ ◦Ψ, (31)

where, as above, the first scaled matrix in the decomposition, L1 ◦ C, is defined as,

L1 ◦ C ≡


Cθr0

√
$1Cθr0β Cθr0Sr

√
ζ1Cθr0A

√
$1C′θr0β $1Cβ

√
$1CβSr

√
$1ζ1CβA

C′θr0Sr
√
$1C′βSr CSr

√
ζ1CSrA

√
ζ1C′θr0A

√
$1ζ1C′βA

√
ζ1C′SrA ζ1CA


where, equivalently, the (q − 1)× T matrix Cθr0A =

(
Cθr0A1 , . . . ,Cθr0AT

)
has column vectors,

Cθr0At ≡ %t
∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

φt,k,τ
ψt,τ (k)

∇θr0κ(k, τ,St,θ0)∇Aκ(k, τ,St,θ0)′ dk,

for t = 1, . . . , T , and the remaining elements of L1 ◦ C are defined similarly. The additional term in

the second part of the decomposition (31), Ψ, is given by,

Ψ ≡ diag
(
0(q−1)×1, λβ Ψβ, 0T (p−1)×1, λA Ψ1, . . . , λA ΨT

)
,

where Ψβ and Ψt, for t = 1, . . . , T , are defined as in Theorem 1.

7.4 Definitions for WPLS Estimation

This section defines the plug-in estimators for the WPLS objective function in equation (22). Moreover,

it provides the limiting asymptotic variances for the WPLS estimator in Theorem 4 and Corollary 1.

Expressions for Ψ̂β and Ψ̂t. Letting B̂ and Ât, t = 1, . . . , T , be first-stage PLS estimates of β

and At, respectively, then we define the plug-in estimators Ψ̂β and Ψ̂A as,

Ψ̂β =
2

log2(u/v)

[
ζ(1,1)(p, u, u, B̂)

log2(C(p, u, B̂)) C2(p, u, B̂)
+

ζ(1,1)(p, v, v, B̂)

log2(C(p, v, B̂)) C2(p, v, B̂)

− 2
ζ(1,1)(p, u, v, B̂)

log(C(p, u, B̂)) C(p, u, B̂) log(C(p, v, B̂)) C(p, v, B̂)

]
,

(32)
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Ψ̂t =
e2Ât uB̂

u2B̂

(
1 + e−2B̂Ât uB̂

2
− e−2ÂtuB̂

)
, t = 1, ..., T, (33)

whose consistency for Ψβ and Ψt follows by Theorem 3 and the continuous mapping theorem.

Limiting Covariance for WPLS. The limiting Hessian and covariance matrices for the WPLS

estimator have the same block-wise structure as for the PLS in (30) and (31) and may be written as,

Iw = L1 ◦Mw + L2 ◦Λw, Ωw = L1 ◦ Cw + L2 ◦Λw ◦Ψw, (34)

respectively. First, for the Hessian, Iw, whose first scaled matrix, L1 ◦Mw, is defined as,

L1 ◦Mw ≡


Mw

θr0

√
$1Mw

θr0β
Mw

θr0S
r

√
ζ1Mw

θr0A

√
$1(Mw

θr0β
)′ $1Mw

β

√
$1Mw

βSr
√
$1ζ1Mw

βA

(Mw
θr0S

r)′
√
$1(Mw

βSr)
′ Mw

Sr
√
ζ1Mw

SrA
√
ζ1(Mw

θr0A
)′
√
$1ζ1(Mw

βA)′
√
ζ1(Mw

SrA)′ ζ1Mw
A


where, e.g., the (q−1)×T matrix Mw

θr0A
=
(
Mw

θr0A1
, . . . ,Mw

θr0AT

)
has column vectors that are defined

by Mw
θr0At

= Mθr0At
/w(φt) for t = 1, . . . , T . The remaining elements of Mw are similarly adjusted

versions of the corresponding element in M using the weight 1/w(φt) at each point in time. The

second term in the decomposition of Iw, that is, L2 ◦Λw, is given by,

L2 ◦Λw ≡ diag

(
0(q−1)×1,

$2T

w(Ψβ)
, 0T (p−1)×1,

ζ2

w(Ψ1)
, . . . ,

ζ2

w(ΨT )

)
.

Next, for the covariance matrix, Ωw, the first part in its decomposition, L1 ◦ Cw, is defined as,

L1 ◦ Cw ≡


Cwθr0

√
$1Cwθr0β Cwθr0Sr

√
ζ1Cwθr0A

√
$1(Cwθr0β)′ $1Cwβ

√
$1CwβSr

√
$1ζ1CwβA

(Cwθr0Sr)
′ √

$1(CwβSr)′ CwSr
√
ζ1CwSrA

√
ζ1(Cwθr0A)′

√
$1ζ1(CwβA)′

√
ζ1(CwSrA)′ ζ1CwA


where, similarly, the (q−1)×T matrix Cwθr0A =

(
Cwθr0A1

, . . . ,Cwθr0AT
)

has column vectors that are adjusted

to account for the weighting as Cwθr0At = Cθr0A1/w(φt)
2 for t = 1, . . . , T . The remaining elements of the

first part L1 ◦ Cw are defined analogously using scaling with 1/w(φt)
2. The additional term in the

second part of the decomposed WPLS covariance matrix in (34), Ψw, is given by,

Ψw ≡ diag

(
0(q−1)×1,

Ψβ

w(Ψβ)
, 0T (p−1)×1,

Ψ1

w(Ψ1)
, . . . ,

ΨT

w(ΨT )

)
.
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7.5 Auxiliary Results

Lemma 1. Under the conditions for Theorem 3,

1√
N



∑T
t=1

∑Nt
j=1∇θr0κ(kj , τj ,St,θ0)εt,kj ,τj∑T

t=1

∑Nt
j=1∇βκ(kj , τj ,St,θ0)εt,kj ,τj∑N1

j=1∇Srκ(kj , τj ,S1,θ0)ε1,kj ,τj
...∑NT

j=1∇Srκ(kj , τj ,ST ,θ0)εT,kj ,τj∑N1
j=1∇Aκ(kj , τj ,S1,θ0)ε1,kj ,τj

...∑NT
j=1∇Aκ(kj , τj ,ST ,θ0)εT,kj ,τj



L−s−−→ C1/2 ×


Eθr0

Ẽβ

ESr

ẼA



where Eθr0
and EA are defined in Theorem 3, Ẽβ and the T × 1 vector ẼA contain standard Gaussian

random variables, which are independent of each other and of the filtratation F , and the asymptotic

covariance matrix, C, is defined through the Hadamard product in equation (31).

Proof. Follows by the same arguments as Lemma 1 in Andersen et al. (2015).

Lemma 2. Under the conditions for Theorem 3, the convergence in Lemma 1 and Theorem 1 holds

jointly, and further, the vectors (E′θr0
, Ẽβ,E

′
Sr , Ẽ

′
A)′ and (Yβ,Y

′
A)′ are independent.

Proof. Follows by the same arguments as Lemma 3 in Andersen et al. (2015).

7.6 Proof of Theorem 1

First, it is more convenient to work with the dynamics of x = log(X) throughout the proof, which by

an application of Itô lemma (under P), is given by,

dxt = α′t dt +

∫
R
x µ̃P(dt, dx). (35)

Next, for our analysis, it is easier to work with an alternative representation of x where integration is

defined with respect to a Poisson measure. To this end, we set,

νP+(x) = Aβ|x|−β−1 + max{νP+(x)−Aβ|x|−β−1, 0}, for x > 0, (36)

and νP−(x) is defined analogously. Using the Grigelionis representation (Theorem 2.1.2, Jacod and

Protter (2012)), and upon suitably extending the probability space, we can represent the dynamics of
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x under P as,

dxt = α′t dt +

∫
R+×R+×[0,1]×R

1(u ≤ A+
t−, x > 0) 1(z ≤ νP+(x)/νP+(x))x µ̃(dt, du, dz, dx)

+

∫
R+×R+×[0,1]×R

1(u ≤ A−t−, x < 0) 1(z ≤ νP−(x)/νP−(x))x µ̃(dt, du, dz, dx),

(37)

where µ is an integer-valued random measure on R+ × R+ × [0, 1] × R with compensator defined by

dt⊗ du⊗ dz ⊗ (νP−(x)1{x<0} + νP+(x)1{x>0}) dx. Noting that β > 1, we may then write,

dxt = α
′′
t dt +

∫
R+×R+×[0,1]×R

1(u ≤ A+
t−, x > 0) 1(z ≤ Aβ|x|−β−1/ νP+(x))x µ̃(dt, du, dz, dx)

+

∫
R+×R+×[0,1]×R

1(u ≤ A−t−, x < 0) 1(z ≤ Aβ|x|−β−1/ νP−(x))x µ̃(dt, du, dz, dx) + dYt,

(38)

where α
′′

is a drift term, which is a weighted sum of α and A±, and Y is a “residual” process satisfying

Assumption A in Todorov (2015). Importantly, note that the two jump martingales in equation

(38) have jump compensators A+
t−

Aβ
|x|β+1 1{x>0} and A−t−

Aβ
|x|β+1 1{x<0}, respectively. These correspond to

time-changed stable processes and, as a result, we can finally write,

dxt = α
′′
t dt + |A+

t−|1/βdS
+
t + |A−t−|1/βdS

−
t + dYt, (39)

where S+ and S− are independent stable processes with Lévy densities
Aβ
|x|β+1 1x>0 and

Aβ
|x|β+1 1x<0,

respectively, and with zero drifts. This representation of x is used in what follows.

We start with β̂ − β, where we can follow the same steps provided for the corresponding proof

in Todorov (2015). Note that the setup in Todorov (2015) is more restrictive, assuming A−t = A+
t .

However, due the differencing of the increments of x in the construction of our statistic as well as

the fact that the summands do not overlap (in the sense that they use different increments of x), the

difference between the models here and in Todorov (2015) is irrelevant. Hence, we have,

β̂ − β =

bnT c/2∑
i=kn+1

χni + op(
√

∆n), (40)

where we set,

χni =
1

log(u/v)

1

bnT c/2− kn

×
[

cos(u∆
−1/β
n µ

−1/β
p,β Sni )− C(p, u, β)

log(C(p, u, β)) C(p, u, β)
−

cos(v∆
−1/β
n µ

−1/β
p,β Sni )− C(p, v, β)

log(C(p, v, β)) C(p, v, β)

]
, (41)

with µp,β and C(p, v, β) given in Section 7.2, and,

Sni =
|A+

(i−2)∆n−|
1/β (∆n

i S
+ −∆n

i−1S
+) + |A−(i−2)∆n−|

1/β (∆n
i S
− −∆n

i−1S
−)

|A(i−2)∆n−|1/β
. (42)
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Next, we turn to the difference Â − A. First, using β̂ − β = Op(
√

∆n) as well as the fact that

E|∆n
i x| ≤ K∆

1/β−ι
n for some arbitrary small ι > 0 (after appropriate localization), the following bound

holds for each t = 1, ..., T ,

1

pn

∑
i∈Int

[
cos
(
u∆−1/β̂

n (∆n
2ix−∆n

2i−1x)
)
− cos

(
u∆−1/β

n (∆n
2ix−∆n

2i−1x)
) ]

= Op

(√
∆1−ι
n

)
, ∀ι > 0.

(43)

Now, using Assumption 1 for the residual jump component in equation (38), Y , as well as for the

dynamics of the drift term in Assumption 1, and the restriction for β′ in the theorem, we have,

1

pn

∑
i∈Int

[
cos
(
u∆−1/β

n (∆n
2ix−∆n

2i−1x)
)
− cos

(
u∆−1/β

n A
1/β
(i−2)∆n

Sni

) ]
= op(1/

√
pn). (44)

Moreover, by the dynamics of the processes A± in Assumption 1, it follows that,

1

pn

∑
i∈Int

e−A(i−2)∆nu
β − e−Atu

β
= Op

(
(pn∆n)1/β−ι

)
, ∀ι > 0, (45)

e−A2∆n(bnt/2c−pn)u
β − e−Atu

β
= Op

(
(pn∆n)1/β−ι

)
, ∀ι > 0. (46)

Finally, using the uncorrelatedness of the summands below, we readily have,

1

pn

∑
i∈Int

[
cos
(
u∆−1/β

n A
1/β
(i−2)∆n

Sni

)
− e−A(i−2)∆nu

β
]

= Op(1/
√
pn ). (47)

By combining the above results and using a Taylor expansion, it follows that,

Ât −At =
∑
i∈Int

χnt,i + op(1/
√
pn ), t = 1, ..., T, (48)

where we denote,

χnt,i =

 − e
A2∆n(bnt/2c−pn)u

β

uβ
1
pn

[
cos
(
u∆
−1/β
n A

1/β
(i−2)∆n−S

n
i

)
− e−A(i−2)∆nu

β
]
, if i ∈ Int ,

0, otherwise.
(49)

Therefore, what remains to be proved is, that the vector
∑bnT c/2

i=kn+1

(√
nTχni ,

√
pn
(
χnt,i
)T
t=1

)
converges

to the limit in the theorem (without loss of generality, we can, and do, assume n > kn + pn). First,

direct calculations as well as our assumption for the dynamics of A±t imply,

En2i−2(χni ) = 0, En2i−2(χnt,i) = 0, (50)

nT

bnT c/2∑
i=kn+1

En2i−2(χni )2 =
nT

bnT c/2− kn
Ψβ, pn

bnT c/2∑
i=kn+1

En2i−2(χnt,i)
2 = Ψt + op

(√
pn∆n

)
, (51)
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√
nT
√
pn

bnT c/2∑
i=kn+1

En2i−2

(
χni χ

n
t,i

)
= Op(

√
pn/n), pn

bnT c/2∑
i=kn+1

En2i−2

(
χns,i χ

n
t,i

)
= 0, s 6= t, (52)

n2

bnT c/2∑
i=kn+1

En2i−2(χni )4 = Op(1/n), p2
n

bnT c/2∑
i=kn+1

En2i−2(χnt,i)
4 = Op(1/pn). (53)

In addition, using the proof of Theorem 1 in Todorov and Tauchen (2012), we have,

√
n

bnT c/2∑
i=kn+1

En2i−2[χni (M2i∆n −M(2i−2)∆n
)] = op(1),

√
pn

bnT c/2∑
i=kn+1

En2i−2[χnt,i(M2i∆n −M(2i−2)∆n
)] = op(1),

(54)

for any bounded martingale M defined on the original probability space. Hence, by combining the

above results, we may apply Theorem IX.7.28 of Jacod and Shiryaev (2003) to conclude that the

sequence
∑bnT c/2

i=kn+1

(√
nTχni ,

√
pn
(
χnt,i
)T
t=1

)
converges to the limit in the theorem.

7.7 Proof of Theorem 2

The consistency result follows by applying Theorem 1 in conjunction with the same arguments provided

to establish consistency in Theorem 1 of Andersen et al. (2015).

7.8 Proof of Theorem 3

By utilizing the consistency result in Theorem 2 as well as differentiability of the implied volatility

function, we have that θ̂r, B̂, {Ŝrt }t=1,...,T and {Ât}t=1,...,T with probability approaching one, solve,

∑T
t=1

∑Nt
j=1

(
κ̂t,j − κj(Ŝt, θ̂)

)
∇θr0κj(Ŝt, θ̂) = 0∑T

t=1

∑Nt
j=1

(
κ̂t,j − κj(Ŝt, θ̂)

)
∇βκj(Ŝt, θ̂) + λβ nT

(
β̂ − B̂

)
= 0,∑N1

j=1

(
κ̂1,j − κj(Ŝ1, θ̂)

)
∇Srκj(Ŝ1, θ̂) = 0,

...∑NT
j=1

(
κ̂T,j − κj(ŜT , θ̂)

)
∇Srκj(ŜT , θ̂) = 0,∑N1

j=1

(
κ̂1,j − κj(Ŝ1, θ̂)

)
∇Aκj(Ŝ1, θ̂) + λApn

(
Â1 − Â1

)
= 0,

...∑NT
j=1

(
κ̂T,j − κj(ŜT , θ̂)

)
∇Aκj(ŜT , θ̂) + λA pn

(
ÂT − ÂT

)
= 0.

(55)

Next, by a first-order Taylor expansion for (55), the mean-value theorem and Assumption 2,

(WnH̃ Wn)W−1
n


θ̂β − θβ
B̂ − β

Ŝ − S

Â −A

 = Wn


Sθr0
Sβ
SSr .

SA

 + op(Wn), (56)
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where the (q + Tp) × (q + Tp) Hessian matrix H̃ ≡ H(S̃, θ̃) is defined by equation (29) for some

intermediate values of the state vectors S̃ ∈ [Ŝ,S] and parameters θ̃ ∈ [θ̂,θ0], and with score functions

given as,

Sθr0
≡

T∑
t=1

Nt∑
j=1

εt,j ∇θr0κj(St,θ0), Sβ ≡
T∑
t=1

Nt∑
j=1

εt,j ∇βκj(St,θ0) + λβ nT (β̂ − β),

SSr ≡ (S ′Sr1 , . . . ,S
′
SrT

)′, with SSrt
≡

Nt∑
j=1

εt,j ∇Srκj(St,θ0), and

SA ≡ (SA1 , . . . ,SAT )′, with SAt ≡
Nt∑
j=1

εt,j ∇Aκj(St,θ0) + λA pn (Ât −At).

The op(Wn) term in equation (56) comes from (higher-order) Taylor expansion effects of the gradient

as well as second-order derivatives of the form, e.g., (B̂ − β)
∑T

t=1

∑Nt
j=1 εt,j∇ββκj(St,θ0), which are

both asymptotically negligible in the present setting, since T is fixed, see, e.g., the equivalent expansion

in Section 8.3.2 of Andersen et al. (2017). Now, since θ̃
P−→ θ0 and S̃t

P−→ St for t = 1, . . . , T , uniformly,

by Theorem 2, and we have that the mesh of the log-moneyness grid N τ
t ∆t,τ (ik)

P−→ ψt,τ (k) uniformly

on the interval (k(t, τ), k̄(t, τ)), in addition to,

N

n̄
→ $1,

n

n̄
→ $2,

N

pn
→ ζ1,

pn
pn
→ ζ2,

pn
n
→ 0,

by Assumption 2 as well as the function κ(k, τ,Z,θ) being second-order differentiable in their argu-

ments by Assumption 4 for any finite Z and θ, we may combine results to establish convergence for

the Hessian matrix,

Wn H̃ Wn
P−→ I, (57)

locally uniformly in Z and θ, where the (q + Tp)× (q + Tp) limiting matrix I is defined in equation

(30). To see this, note that we may write the elements along the diagonal as,

1

N
Hθr0

(Z̃, θ̃) =
T∑
t=1

Nt

N

1

Nt

Nt∑
j=1

∇θr0κj(Z̃t, θ̃)∇θr0κj(Z̃t, θ̃)′
P−→ Mθr0

,

1

n̄
Hβ(Z̃, θ̃) =

N

n̄

T∑
t=1

Nt

N

1

Nt

Nt∑
j=1

∇βκj(Z̃t, θ̃)∇βκj(Z̃t, θ̃)′ + λβ
n

n̄
T

P−→ $1Mβ + $2 λβ T,

1

N
HSrt

(Z̃t, θ̃) =
Nt

N

1

Nt

Nt∑
j=1

∇Srt κj(Z̃t, θ̃)∇Srt κj(Z̃t, θ̃)′
P−→ MSrt

,

1

pn
HAt(Z̃, θ̃) =

N

pn

Nt

N

1

Nt

Nt∑
j=1

∇Aκj(Zt,θ)∇Aκj(Zt,θ)′ + λA
pn
pn

P−→ ζ1MAt + ζ2 λA,
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for t = 1, . . . , T . As equivalent probability limits for the off-diagonal elements follow similarly, the

asymptotic distribution result is established by using equation (57) in conjunction with Lemmas 1-2

and Theorem 1 for (56), the continuous mapping theorem and Slutsky’s theorem.

7.9 Proof of Theorem 4

First, by Theorems 2 and 3, we have the bounds ‖θ̂r − θr0‖ ≤ Op(1/
√
N), ‖B̂ − β‖ ≤ Op(1/

√
n̄),

‖Ŝr − Sr‖ ≤ Op(1/
√
N) and ‖Â −A‖ ≤ Op(1/

√
pn). Next, make the decomposition,

φ̂t −
1

Nt

Nt∑
j=1

φj,t = φ̂
(1)
t + φ̂

(2)
t + φ̂

(3)
t , with φ̂

(1)
t =

1

Nt

Nt∑
j=1

(ε2j,t − φj,t),

φ̂
(2)
t =

1

Nt

Nt∑
j=1

εj,t

(
κj,t(St,θ0)− κj,t(Ŝt, θ̂)

)
, φ̂

(3)
t =

1

Nt

Nt∑
j=1

(
κj,t(St,θ0)− κj,t(Ŝt, θ̂)

)2

where φj,t = φt,kjτj is used as shorthand notation. Hence, by applying the above consistency bounds

in conjunction with Assumption 6, we have |φ̂(2)
t |+ |φ̂

(3)
t | ≤ Op(N ι−1) for some arbitrarily small ι > 0.

Together with Ψ̂β
P−→ Ψβ and Ψ̂t

P−→ Ψt by Theorem 3 and the continuous mapping theorem, we can use

exactly the same arguments as provided for Theorem 5 in Andersen et al. (2017) in conjunction with

WPLS equivalents to the expansions (55) and (56) as well as Theorem 1 to establish the result.
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